Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
analog_computer:confetti501_confetti_neuron [2019/07/03 23:32]
admin
analog_computer:confetti501_confetti_neuron [2020/06/30 19:16] (current)
admin [Confetti501 Confetti Neuron]
Line 3: Line 3:
 Confetti Neurons are special modules to implement an analog artificial neural network into the multi-connect system of the [[analog_computer:​analog_computer_main| Analog Computer Confetti]].\\ Confetti Neurons are special modules to implement an analog artificial neural network into the multi-connect system of the [[analog_computer:​analog_computer_main| Analog Computer Confetti]].\\
 {{ :​analog_computer:​confetti501_confettineuron.jpg?​600 |}}\\ {{ :​analog_computer:​confetti501_confettineuron.jpg?​600 |}}\\
-They are the successor of the [[pop_neuron:​pop_neuron_main|Pop Neuron]].\\+Check out the [[https://​www.routledge.com/​Handmade-Electronic-Music-The-Art-of-Hardware-Hacking/​Collins/​p/​book/​9780367210106?​gclid=EAIaIQobChMIjrSoju-p6gIVDJyzCh3h-g0sEAAYASAAEgLcA_D_BwE|Third Edition - Handmade Electronic Music]] by Nicolas Collins. The chapter "​Sounds from Neural Networks"​ by Wolfgang Spahn is about the Confetti Neuron.\\ 
 +The Confetti Neuron is the successor ​and a further development ​of the [[pop_neuron:​pop_neuron_main|Pop Neuron]]. It's design focus is on a better sound quality, less power consumption and easier handling than the Pop Neuron.\\
  
 ---- ----
-==== Explaining the Circuit ====+==== The Circuit ====
  
 The basic idea for the circuit of the Confetti Neuron was to build a circuit out of four different Confetti modules: a [[analog_computer:​confetti704_non_inverting_summer|summing amplifier]],​ an [[analog_computer:​confetti705_inverting_integrator|integrator]] and a comparator, depending on the condition of the neuron, a [[analog_computer:​confetti108_non_inverting_comparator|non inverting comparator]] for the excitatory and an [[analog_computer:​confetti107_inverting_comparator|inverting comparator]] for the inhibitory. \\ The basic idea for the circuit of the Confetti Neuron was to build a circuit out of four different Confetti modules: a [[analog_computer:​confetti704_non_inverting_summer|summing amplifier]],​ an [[analog_computer:​confetti705_inverting_integrator|integrator]] and a comparator, depending on the condition of the neuron, a [[analog_computer:​confetti108_non_inverting_comparator|non inverting comparator]] for the excitatory and an [[analog_computer:​confetti107_inverting_comparator|inverting comparator]] for the inhibitory. \\
Line 12: Line 13:
 {{:​analog_computer:​confetti501_wiring.jpg?​400|}}\\ {{:​analog_computer:​confetti501_wiring.jpg?​400|}}\\
  
-These four models ​combined behaved exactly like Shun-Ichi Amari had described*. They would fire or not fire (outputs +12V or -12V) when a certain input level (action potential) was reached.+These four modules ​combined behaved exactly like Shun-Ichi Amari had described* ​in his neural model that should explain our hear beat. They would fire or not fire (outputs +12V or -12V) when a certain input level (action potential) was reached.
  
 The option to change the integrator circuit on the board by plugging in capacitors with different values (from 100pF up to 1000µF) and the option to connect at the input as many different sources as one wants makes the Confetti Neuron highly flexible to use in all kind of applications.\\ The option to change the integrator circuit on the board by plugging in capacitors with different values (from 100pF up to 1000µF) and the option to connect at the input as many different sources as one wants makes the Confetti Neuron highly flexible to use in all kind of applications.\\
-Thus one can use the boards in combination with the plug-in slots of the Confetti Neuron ​module to create an analog ​neuron. In adding resistors and capacitors to it one can build an excitatory (EXC) or an inhibitory (INH) neuron out of a Confetti Neuron 501 module, depending on the jumper setting.\\+Thus one can use the boards in combination with the plug-in slots of all the analog computer ​module to create an analog ​neural network. In adding resistors and capacitors to it one can build an excitatory (EXC) or an inhibitory (INH) neuron out of a Confetti Neuron 501 module, depending on the jumper setting.\\
  
 *[[https://​link.springer.com/​article/​10.1007/​BF00337259|Dynamics of Pattern Formation in Lateral-Inhibition Type Neural Fields]] by [[https://​en.wikipedia.org/​wiki/​Shun%27ichi_Amari|Shun-Ichi Amari]] *[[https://​link.springer.com/​article/​10.1007/​BF00337259|Dynamics of Pattern Formation in Lateral-Inhibition Type Neural Fields]] by [[https://​en.wikipedia.org/​wiki/​Shun%27ichi_Amari|Shun-Ichi Amari]]
Line 21: Line 22:
 ---- ----
 ==== Schematic ==== ==== Schematic ====
-{{:​analog_computer:​confetti501_schematic.jpg?​400|}}\\+{{:​analog_computer:​confetti501_schematic.jpg?​600|}}\\
  
 ---- ----
Line 37: Line 38:
 **The Confetti Oscillator**\\ **The Confetti Oscillator**\\
 {{:​analog_computer:​confetti501_confettineuronoscillator.jpg?​400|}}\\ {{:​analog_computer:​confetti501_confettineuronoscillator.jpg?​400|}}\\
 +
 +Shun-Ichi Amaris neurons have the ability to oscillate when one puts two together and they are also capable to synchronize with each other.
  
 To patch two neurons for an oscillator one has to connect the output of the first neuron to the input of the second neuron and vice versa. Depending on the frequency various resisters could be used. The value should be more than 5kOhm and could be up to 12MOhm. The capacitor on the board should have a value from 100pF to 1µF.\\ To patch two neurons for an oscillator one has to connect the output of the first neuron to the input of the second neuron and vice versa. Depending on the frequency various resisters could be used. The value should be more than 5kOhm and could be up to 12MOhm. The capacitor on the board should have a value from 100pF to 1µF.\\
 +
 +{{:​analog_computer:​confettineuron_oscillator_02b.png?​300|}}\\
  
 One can use for example for a good sounding oscillator a resistor value of 100kOhm and a capacitor value of 3.9nF.\\ One can use for example for a good sounding oscillator a resistor value of 100kOhm and a capacitor value of 3.9nF.\\
 To change the frequency one can use a potentiometer instead of the two resistors. For a good result one should use a 2MOhm stereo potentiometer. To change the frequency one can use a potentiometer instead of the two resistors. For a good result one should use a 2MOhm stereo potentiometer.
  
-{{:​analog_computer:​confettineuron_oscillator_02b.png?​200|}} +{{:​analog_computer:​confettineuron_oscillatorboards.png?​400|}}\\
-{{:​analog_computer:​confettineuron_oscillatorboards.png?​200|}}\\+
  
 ---- ----
Line 61: Line 65:
 ---- ----
 ==== Paper PCB ==== ==== Paper PCB ====
-{{:​analog_computer:​confetti501_confetti_neuron_12.jpg?​400|}}\\ + 
-{{ :​analog_computer:​confetti501_confetti_neuron_12.zip |}}\\+{{:​analog_computer:​confetti501_confetti_neuron_20.jpg?​400|}}\\ 
 +{{ :​analog_computer:​confetti501_confetti_neuron_20.zip |}}\\
  
 ---- ----
Line 91: Line 96:
 ==== Acknowledge ==== ==== Acknowledge ====
 These oscillator and network behave similar to the one described in [[https://​link.springer.com/​article/​10.1007/​BF00337259|Dynamics of Pattern Formation in Lateral-Inhibition Type Neural Fields]] by [[https://​en.wikipedia.org/​wiki/​Shun%27ichi_Amari|Shun-Ichi Amari]]. The implementation of the analog neuron was described in [[https://​www.semanticscholar.org/​paper/​Implementation-of-artificial-neural-oscillators-Tymoshchuk-Paterega/​43181abe684d041b0dc3c30eaf8bd942524de17e|Implementation of Artificial Neural Oscillators]] in 2009 by Pavlo V. Tymoshchuk, Yuriy I. Paterega.\\ These oscillator and network behave similar to the one described in [[https://​link.springer.com/​article/​10.1007/​BF00337259|Dynamics of Pattern Formation in Lateral-Inhibition Type Neural Fields]] by [[https://​en.wikipedia.org/​wiki/​Shun%27ichi_Amari|Shun-Ichi Amari]]. The implementation of the analog neuron was described in [[https://​www.semanticscholar.org/​paper/​Implementation-of-artificial-neural-oscillators-Tymoshchuk-Paterega/​43181abe684d041b0dc3c30eaf8bd942524de17e|Implementation of Artificial Neural Oscillators]] in 2009 by Pavlo V. Tymoshchuk, Yuriy I. Paterega.\\
-Like already mentioned one importent ​origin of the Pop Neuron is the [[http://​solarbotics.net/​bftgu/​starting_nvnet_bicore.html|bicore]] circuit of the [[http://​solarbotics.net/​bftgu/​default.htm|BEAM]].\\+One important ​origin of the Confetti ​Neuron is the [[http://​solarbotics.net/​bftgu/​starting_nvnet_bicore.html|bicore]] circuit of the [[http://​solarbotics.net/​bftgu/​default.htm|BEAM]].\\
 A digital implementation on syncing and desyncing processes of two mutually coupled systems one can find on [[http://​interface.khm.de/​index.php/​research/​experiments/​netze-networks-neural-oscillators/​|Netze/​Networks Neural Oscillators]] by [[http://​interface.khm.de/​|Lab3 - Laboratory for Experimental Computer Science at the Academy of Media Arts Cologne]].\\ A digital implementation on syncing and desyncing processes of two mutually coupled systems one can find on [[http://​interface.khm.de/​index.php/​research/​experiments/​netze-networks-neural-oscillators/​|Netze/​Networks Neural Oscillators]] by [[http://​interface.khm.de/​|Lab3 - Laboratory for Experimental Computer Science at the Academy of Media Arts Cologne]].\\
 An other example of an electric implementation of an analog neuron for controlling robots one can find in [[https://​edoc.hu-berlin.de/​handle/​18452/​16352|Neurodynamische Module zur An other example of an electric implementation of an analog neuron for controlling robots one can find in [[https://​edoc.hu-berlin.de/​handle/​18452/​16352|Neurodynamische Module zur
 Bewegungssteuerung autonomer Bewegungssteuerung autonomer
 mobiler Roboter]] by [[http://​www.neurorobotik.de/​team_en.php|Manfred Hild]]. mobiler Roboter]] by [[http://​www.neurorobotik.de/​team_en.php|Manfred Hild]].
 +
 +----
 +==== License ====
 +
 +The Confetti501 Confetti Neuron was designed by **Wolfgang Spahn** 2019-20.\\
 +It is licensed under a [[http://​creativecommons.org/​licenses/​by-nc-sa/​4.0/"​|Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License]].
 +
 +<​html>​
 +<a rel="​license"​ href="​http://​creativecommons.org/​licenses/​by-nc-sa/​4.0/"><​img alt="​Creative Commons License"​ style="​border-width:​0"​ src="​https://​i.creativecommons.org/​l/​by-nc-sa/​4.0/​88x31.png"​ /></​a> ​
 +</​html>​
  
 ---- ----